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Abstract-The finite element theory is presented for the analysis of the dispersive character
istics of elastic waveguides of arbitrary cross-section. The necessary mass and stiffness proper
ties of circular core, circular sleeve, rectangular, and triangular elements are developed. The
practical application of these new elements is demonstrated in the calculation of frequency
spectra for circular, square, and triangular waveguides and for a fiber reinforced composite.
The dispersive characteristics ofthe composite material are determined from a formulation which
models the fiber as a cylinder and the surrounding matrix material as a rectangular section. The
numerical results obtained by the finite element analysis are also compared with the available
results from other methods.

1. INTRODUCTION

The dispersive characteristics of bounded elastic media cause a pulse to diminish in ampli
tude as it propagates due to the different phase velocities of the various components of the
pulse. This phenomenon provides an opportunity to develop composite materials which will
have desirable pulse attenuation characteristics through selection of density ratios, stiffness
ratios, geometric shape and orientation of the various components. Such materials would
be of great utility in structures which are subject to high intensity localized transient loads.
However, before such designs are possible it is necessary to have an efficient, accurate and
simple technique for assessing the influence of the various design parameters on the disper
sive characteristics. The analysis developed in this paper provides such a technique for the
bounded elastic media (waveguides) of arbitrary cross-section including fiber reinforced
composites.

The first theoretical papers devoted to the study of longitudinal wave propagation in an
infinitely long isotropic circular cylindrical bar were published by Pochhammer and Chree
in 1876 and 1889 respectively[1,2]. These papers contained the first exact formulation of the
transcendental equation which relates the admissible frequencies of propagation to the
wave number, the so-called frequency equation or dispersion relation. Due to the compli
cated mathematical nature of the Pochhammer-Chree frequency equation, many years
passed before all of its implications were fully appreciated. It was not until the middle of
the Twentieth Century that it was fully realized that the exact frequency equation produces
an infinite number of branches, called dispersion curves, for each mode of propagation.
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The term mode, in this useage, refers to the type of wave motion, i.e. longitudinal, flexural
or torsional and not to resonant frequencies of finite bodies. In addition, the spectra (set
of dispersion curves) for each mode contain an infinite set of real branches corresponding
to real wave numbers and an infinite set of complex branches corresponding to imaginary
and complex wave numbers.

These results are now understood, in a theoretical sense, although the Pochammer-Chree
solution is numerically intractable and much too cumbersome for the solution of practical
problems. Thus, since the 1950's, much effort has been devoted to the formulation of approx
imate solutions with the goal of duplicating the first few branches of the exact frequency
equation over a limited range of frequencies and wave numbers and usually for a single
mode of propagation. The comprehensive review articles by Miklowitz[3], Abramson
et al.[4], and Redwood[5] describe the development of the many approximate methods
which have been advanced and discuss the problem of propagation in noncircular wave
guides.

The only prior work using finite element methods for the derivation of the frequency
equation is due to Wade[6]. This approach used a mixed force-displacement method of
analysis to formulate and investigate the dispersion characteristics of waveguides with
cross-sections which consist of an assemblage of rectangular elements of different areas
and material properties. The method of formulation would be very cumbersome if applied
to sections which consist of a large number of elements because both tractions and displace
ments must be considered at all element boundaries, a complex procedure which essentially
requires manual assembly of the matrix elements.

In this paper several finite elements of a new type have been formulated which greatly
facilitate study of the dispersive characteristics of elastic waveguides of arbitrary cross
section. The practical application of these new elements has been demonstrated in the
calculation of frequency spectra for circular, square, and triangular waveguides and for a
fiber reinforced composite. The dispersive behavior of the composite material has been
determined from a formulation which models the fiber as a cylinder and the surrounding
matrix material as a rectangular section. The results for the triangular waveguide presented
here have not been previously published. The numerical results obtained by the finite ele
ment analysis are also compared with the available results from other methods.

2. GENERAL ANALYSIS

The waveguide is defined to be a cylinder of constant cross-section and infinitely long in
the z-direction. The cylindrical surface of the waveguide may be generated by any simple
closed curve in the x-y plane and the cross-section may be multiply connected. The elastic
properties of the waveguide material will be assumed to be constant in the z direction. For
stress waves propagating in the z direction the displacement field may be written in the
form

u(x, y, z, t) = u(x, Y)COS(KZ - OJt)

vex, y, z, t) = vex, y)COS(KZ - OJt)

w(x, y, z, t) = w(x, y)sin(Kz - OJt)

(la)

(I b)

(lc)

where u, v, and ware the displacements in the x, y and Z directions, respectively. The parameter
K is the real wave number and OJ is the positive, real circular frequency of the propagating
stress wave.
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It is now advantageous to eliminate the dependence on time by introducing a moving
coordinate system X', y' and z' such that

X' =X (2a)

y' =y (2b)

z' = z - wt/K (2c)

Hence u = ii cos KZ' (3a)

v = vcos KZ' (3b)

w = wsin KZ'. (3c)

Using these moving coordinates, a single finite element can be isolated from the wave
guide, as illustrated in Fig. 1. As in any conventional finite element analysis, approximate
displacement functions for ii, v, and wcan be selected with some free parameters whose
magnitudes can be determined in terms of the designated node displacements, usually on
the external boundary of the element, such as U 1 and U2 at z' = 0 and U3 at z' = n/2K. In
accordance with equations (3) these displacements are the only nonzero displacements at

z'=O z' =7r/2K.

Fig. I. Waveguide finite element

the cross-sectional planes bounding the finite element. Consequently, it is possible to relate
the displacements at any point within the element to the node displacements by means of
the matrix equation

[:] ~ a(x', y', z') [::] ~ au (4)

where a is a rectangular matrix whose coefficients are functions of x', y', and z', while ux ,

uy , and Uz are column matrices representing node displacements in the x', y', and z' direc
tions, respectively. The strain distribution within the element, corresponding to the assumed
displacement distribution, can now be written in the form

E = bu (5)

where E is a column matrix of all strain components and the matrix b is obtained by differ
entiation of the appropriate rows of a in accordance with the strain-displacement relations
of linear elasticity theory.
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The equations of motion for a typical element, expressed in terms of the node displace
ments, can be written as

mil + ku = p (6)

where m is the mass matrix, k is the stiffness matrix, and p represents external loading on
the element in the directions of the node displacements[7]. Using equations (1 and 4) it can
be shown that

(7)

Hence, if no external forces are applied, the equations of motion for the element reduce to

(8)

which is of the same form as the standard equation for free oscillations of an elastic system.
It has been demonstrated in [7] that the element mass matrix is calculated from

(9)

where p is the density and the integration is performed over the volume of the element
between the two bounding planes z' = 0 and z' = n/2K. Similarly, the element stiffness
matrix is calculated from

where E is a matrix of the elastic constants in the stress-strain equation

(J = EE.

(10)

(1 I)

The computation of the matrix product paTa will contain products of sin KZ' and cos KZ'

which when integrated over the element volume will result in a constant factor n/4K appear
ing with the mass matrix m. The computation of the matrix b will lead to the introduction
of the wave number K as a result of the differentiation. Thus, when the product bTEb is
computed and substituted into equation (10), it is found that the stiffness matrix can be
written as the sum of three terms in the form

(12)

where C is a constant and k 1 , k 2 , and k 3 are the three component stiffness matrices. Equa
tion (12) illustrates the explicit dependence of the stiffness matrix on the wave number K.

This dependence is analogous to that which was obtained by Przemieniecki in the formula
tion of finite element stiffness properties for use in the analysis of local instability of thin
walled structures[8].

Equation (8) for a single element can be assembled into the equations of motion for the
complete structure (see Ref [7]), which in this case consist of an assembly of finite elements
making up the cross-section and extending over the quarter wavelength (.?c/4) portion of the
waveguide. These assembled equations can be denoted symbolically as

(13)

Equation (13) can be treated as a real-valued eigenvalue problem in w 2 by substituting real
values for K and solving for the frequencies w. The resulting frequency-wave number
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relationship gives the real branches of the frequency spectra (family of dispersion curves)
for the waveguide, one branch for each degree of freedom. The corresponding eigenvectors
(eigenmodes) describe the displacement distribution in the waveguide for each branch.
Differentiation of equation (13) with respect to K leads to an eigenvalue equation for the
product of wand the group velocity dwjdK. Thus, the solution of both eigenvalue equations
could be used to evaluate the group velocity spectra.

3. FINITE ELEMENT MODELS

To represent various cross-sectional geometries of the waveguide, several finite elements
have been developed. For circular cross-sections it is necessary to use two types of elements:
the core element and the sleeve element, which can also be used for hollow sections (Fig.
2a). For a more general cross-section either triangular or rectangular elements may be
employed (Fig. 2b & c). The mass and stiffness properties, as computed by equations (9

and 10), will be presented for two types of core elements, and for sleeve, triangular, and
rectangular elements.

SLEEVE ELEMENT

CORE ELEMENT

(a.)

I
(b) (c)

Fig. 2. Cross-sections of waveguide finite slements; (a) circular (axisymmetric),
(b) triangular, and (c) rectangular.

Core element

(a) Linear model. The simplest model for the assumed displacement distribution (longi
tudinal wave propagation mode) in the core element is given by

[

uz(r, Z')] = [Sin KZ'
urCr, z') 0

(14)

where U 1 and U2 are the node displacements and c is the core radius, as shown in Fig. 3.
Due to the symmetry of the motion the node located at z' = 0 is actually a "line" node.
Thus, the U2 displacement represents the magnitude of the radial displacement of the outer
surface of the bar at z' = O. The U 1 displacement describes the longitudinal motion of the
entire bounding plane at z' = nj2K.
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U2

0t-t--I---'zi-r---.----CD __u~J-·-z'

t I
z' =0 z'= v/Z"

Fig. 3. Linear model for core elements.

Equations (9, 10, 14 and 5) can now be used to determine the mass and stiffness matrices
for the linear model of the core element with two degrees of freedom. This leads to the fol
lowing expression

where

m = n~c2 [~ ~]

k= n
2
G ([0 0] [0 4R] 2 2 [2(R + 2) 0] )

8K ° 8(R + I) + KC 4R ° + KCOl

2v
R=-

I -2v

(15)

(16)

(17)

G represents the shear modulus and v is the Poisson's ratio. It should be noted that the
wave number dependence in equation (16) has been expressed in the form previously indi
cated by equation (12).

(b) Quadratic model. If an additional longitudinal displacement node is introduced at
the periphery of the element, as shown in Fig. 4, the longitudinal displacement field will
then be quadratic in r. The resultant displacement distribution for this case is given by

where 1'/ = ric

1'/2 sin KZ'

°
(18)

(19)

Fig. 4. Quadratic model for core elements.
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The resulting mass and stiffness matrices for this three degree of freedom model are

121

.'pc' [2 I

~] (20)m=-- 1 2
24K 0 0

'G ([ 12
-12

o ] [ 0
0 6CR + I)]

and k=~ -12 12 o + KC 0 0 6(R - 1)
24K 0 0 24(R + 1) 6(R + 1) 6(R - 1) 0

[2(R + 2) R+2

m+ K
2
C

2
R; 2 2(R + 2) (21)

0

(c) Higher order models. The number of terms retained in the polynomial representations
of the variations of Uz and Ur with r may be increased through the introduction of displace
ment derivatives at the nodes. A five degree of freedom model was developed, but it appears
that for practical applications it is preferable to use the simpler core models in conjunction
with one or more sleeve elements in order to better describe the radial dependence of the
displacement distribution.

Sleeve element

The longitudinal cross-section of a typical sleeve element is illustrated in Fig. 5. The ele
ment uses four node displacements U 1 ••• U4 and the radial variation of displacements is
assumed to be linear. Hence

where

o

o
1

[1 + - (r l - r)]C
t

(22)

S = sin KZ'

C = cos KZ'

--~--;.

I
z' ·."./21C

Fig. 5. Sleeve element.

(23)

(24)
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The mass matrix is given by

where

and the stiffness matrix by

(d + 1)
(3d + 1)

a
a

(d + 3)
a Ja

(d + 1)
(3d + 1)

(25)

(26)

f

(R + 2)(d + 3)

K
2r:/

sym

(R + 2)(d + I)
(R + 2)(3d + I)

a
a

(d + 3) a 1a
(d + 1)

(3d + 1)

a R(d - 4) + d + 2
a -(R+l)(d+2)

a

6d 2(d+ 1)
+ (d - 1)2

-I
1

x

sym

+ Kr2d2~ 1 fa
sym

a
o

d 2 1nd d- I
2(R + 2)-d2 - 4(R + 1) -d-

-I + I

(R + I)(2d + 1) 1
R(4d-If (2<1-1)

o
o

dlnd
-2(R + 2)-

d2
- I

Ind d - I
2(R + 2)-d2 +4(R + 1)--

-I d+ I

(27)

Triangular element

The triangular waveguide element is depicted in Fig. 6. The element contains six nodes
and its state of deformation is described by a column matrix which consists of nine com
ponents, U 1 ••• U9' The first three components describe the longitudinal displacements
while the fourth through ninth specify the transverse displacements.

The displacements u, v, and IV within the element are assumed to be given by

w(x', y', z',) = (c7x' + csy' + c9)sin KZ'

(28)
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y'

z'
IL- It'

Fig. 6. Triangular element.
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where the constants CI ... C9 can be evaluated in terms of UI '" U9 in order to obtain the
matrix a in equation (4). The result is

where

[

a' cos KZ' 0
a = 0 a' cps KZ'

o 0 a"Ll (29)

Yij = Y; - yj; i,j = 1,2,3 (31)

Xij = x; - xj; i,j = 1,2,3 (32)

AI23 = -!-(X31Y32 - X32Y31); area of the triangle 1,2,3. (33)

Using equations (9 and 29) it can be easily demonstrated that the mass matrix is given
by

m ~ .pAm [;'
0

~Jfi l
48K 0 0

where

m, ~ [:

1 l]2
1

(34)

(35)
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The corresponding stiffness matrix is of the form

( [kU 0

~,,]nA 123G 3
k12k =~ (A 123 )2 ~
ki4 k 13

[0 k21 n2K T+-- k21 0
A I23 kT 022

[(R + 2)k" 0 U)+ K2 0 k 31

o 0

where
k ll = k llx + k lly

[xn' -X32 X31 xn x,,]
X31

2 -X31 X21
sym X21 2

[Yn' -Y32Y31 YnY" ]
Y31

2
-Y31Y21

sym Y21
2

k l2 = (R + 2)k11y + k llx

k 13 = (R + 2)kllx + klly

[

-(R + l)x32 Y32 (RX3IY32 + X32Y3I) -(RX21Y32 + X32 Yzl)]
k 14 = (RX32Y31 + X31Y32) -(R + I)X31Y31 (RX21 Y31 +X31Y21)

-(RX32Y21 + X21Y32) (RX3IYzI + X21Y31) -(R + I)X21Y21

[

-(R - I)Y32 (RY31 + 3Yz) (-RY21 + Yd]
k 21 = -(RY32 + Y31) (R - I)Y31 -(RY21 + Y31)

(-RY32 + Y21) (RY31 + Y21) -(R - I)Y21

[

(R - l)x32 -(RX31 + X32) (RX21 - X32)]
kn = (Rx32 + X31 ) -(R - I)X31 (RX21 + X31)

(Rx32 - X21 ) -(RX31 + X21) (R - I)X21

and the k 31 submatrix is equal to the matrix m1 given by equation (35).

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Rectangular element

The rectangular waveguide element is shown in Fig. 7. The model consists of eight nodes
and twelve displacement degrees of freedom. For this model the assumed displacement
distributions are of the form

u(X', y', z') = (A + Bx' + Cy' + Dx'y')cos KZ'

v(x', y', z') = (A' + B'x' + C'y' + D'x'y')cos KZ'

w(x', y', z') = (A" + B"x' + C"y' + D"x'y')sin KZ'

(45)
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Fig. 7. Rectangular element.
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where A, A', Air, B ... etc. are constants. The matrix a is of the same form as for the triangu
lar element, given by equation (29), except that the matrix a' becomes

where

~ = x'ia

'1 = y'lb.

(46)

(47)

(48)

Using the above matrix a' in equations (29 and 9) it can be shown that the mass matrix
is given by

npab [m, o 0]
ID=-- 0 ID1 0

144K 0 o ID1

where

r~
sym

JID 1 = 4
2 4
I 2

(49)

(50)

The stiffness matrix is given by

[

(R + 2)k31

+K
2 0

o

( [

k
bG 11

k=~ 12 0
144K o

(51)
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(52)

1
2

-2
2k lla = r2

l sym

f
2

k 11b =

sym

-1
1
2

-1
-2

2

-~1-2
2

-21-1
1
2

(53)

(54)

(R + 2) J
k I2 =~ k lla + 2b2 k ilb (55)

f
R + J R - J -(R + J) -(R - 1)1

3 -(R-J) -(R+l) R-J R+J (57)
k 14 = 4ab - (R + 1) - (R - 1) R + J R - J

R-l R+J -(R-J) -(R+J)

f
-2(R-J) 2(R+J) R+J -(R-l)l

k2I=~ -2(R+J) 2(R-J) R-J -(R+J)
a -(R+l) R-l 2(R-l) -2(R+l) (58)

-(R-l) R+J 2(R+l) -2(R-J)

f
-2(R-l) -(R-J) R+J 2(R+J)1

3 -(R-l) -2(R-1) 2(R+J) R+J (59)
k 22 =b -(R+1) -2(R+1) 2(R-J) R-l

-2(R + 1) -(R + 1) R - 1 2(R - 1)

and the submatrix k31 is equal to the matrix m1 given by equation (50).

4. NUMERICAL EXAMPLES

To illustrate the broad applicability of the finite element determination of waveguide
frequency spectra, several types of waveguides were investigated. A circular waveguide was
used to establish the manner in which the finite element frequency spectrum converges to the
known exact solution due to Pochhammer-Chree. A rectangular waveguide was then ana
lyzed and the results compared to those of prior approximate techniques. Since the finite
element method developed in this study is not limited by the geometrical form of the wave
guide cross section, the frequency spectra for a triangular cross section, previously un
available, were also determined. As a final example of the scope of the technique, a fiber
reinforced composite was investigated and the results compared with experimental and
theoretical results.

Only the real valued portions of the spectra have been computed and presented because
the results were obtained through use of a standard, real valued eigenvalue/eigenvector
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subroutine (NROOT). A polynomial solving procedure could be used, at least in cases
with a limited number ofdegrees offreedom to produce the complex portions of the branches.
All programs were written in extended Fortran and run on a CDC 6600 computer.

Circular waveguide

The physical parameters used in the analysis were the same as those used by Zemanek[9]
who has performed an extensive numerical investigation of the exact solution due to Poch
hammer-Chree for an aluminium circular waveguide. Consideration was restricted to
longitudinal mode propagation, since the circular waveguide element properties previously
derived are only appropriate for this mode (axi-symmetrical mode).

The cross section of the rod was subdivided into several equal thickness coaxial elements
as indicated in Fig. 2(a) and the radius of the core element was set equal to the thickness of
the sleeve elements. If the core element is not included, the model would represent longitu
dinal mode propagation in a hollow cylinder or shell. Furthermore, if the elements are
subdivided into groups with different physical properties, the model would be appropriate
for the study of composite circular bars or shells.

The criteria for nontrivial solutions for the nodal displacements given by equation (13)
is that the determinant of the coefficients be equal to zero. The results of this condition and
the exact solution are shown for the first branch of the frequency spectrum in Fig. 8. For

CD 1 ELEMENT (2 OOF I

CD 1 ELEMENT (3 OOF)

CD 2 ELEMENTS (5 OOF)

CD 3 ELEMENTS (T OOF)

CD 4ELEMENTS (9 OOF)

CD'5 ELEMENTS (11 DOF)

CD 6 ELEMENTS (1300F)

.,1.6
~
u
o
~ 1.4
0::

>-....g 1.2
..J
LU
>
LU
~ 1.0

i£
0.8 '--_---1.__-'-__--'-__-'-__'-_---1.__--'

o 234567

NONDIMENSIONAL WAVE NUMBER. lCa

Fig. 8. First branch of the frequency spectrum for the longitudinal mode of propagation
in a circular waveguide (Poisson's ratio v=O·3317).

this comparison, the phase velocity C = wlK has been plotted against wave number, the
former having been nondimensionalized by division by the shear velocity. CS =JGIp and
the latter by multiplication by the bar radius a. It can be seen that the method converges to
the exact solution as the number of elements and the number of degrees of freedom (OOF)
are increased and that only six elements are required to essentially duplicate the exact
dispersion characteristics of the first branch throughout the wave number range, with only
a slight error (1.5 per cent) in frequency at large values of the wave number.
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The finite element frequency equation produces as many branches as there are degrees
of freedom in the model. The behavior of the higher order branches is best illustrated by
plotting the nondimensional frequency n, defined by

(60)

as the ordinate. The first four branches, plotted in this manner are shown in Fig. 9.

6
c:

~
~ 5
~

8
0:
lJ..
..J 4
«z
Q
(f)

~ 3
::t
15zo
Z 2

----- 2 ELEMENTS (500F)
---- 4 ELEMENTS (9 OOF)
--- 6 ELEMENTS (1300F)
++++++++ 10 ELEMENTS (2100F)

-- EXACT SOLUTION [9J

1 2 3 4 5 6 7 8 9 10

NONDIMENSIONAL WAVE NUMBER, /Ca

Fig. 9. First four branches of the frequency spectrum for the longitudinal mode of
propagation in a circular waveguide (Poisson's ratio I' = 0'3317).

The convergence behavior of the finite element idealizations to the exact solution
for each branch is evident. As the number of elements is increased, the frequency rapidly
converges to the exact value for small wave numbers and the lower branches but converges
more slowly as the wave number increases. This is due to the fact that the displacement
field becomes more complex as the wave number increases. The displacement distributions
given by the finite element solution were compared with the exact solution and it was
evident that the large displacement gradients which occur at high wave numbers can be
represented accurately with a large number of sleeve elements.

Rectangular waveguide

As a result of the symmetry properties of the rectangular waveguide only one quadrant
of the cross section need be considered. The finite elements were defined by subdivision of
this quadrant into rectangular subregions of equal dimensions as shown in Fig. 2(c). Both
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the longitudinal and torsional modes were investigated. The longitudinal mode was ob
tained by suppressing the degrees of freedom corresponding to displacements in the plane of
the cross section normal to the internal boundaries of the quadrant. The torsional mode
was investigated by suppressing the longitudinal displacements along these boundaries. The
suppression is performed by setting the appropriate degrees of freedom to zero which is
done by elimination of the corresponding rows and columns from the structural matrices.
A square bar was assumed in the analysis and a value of one-third was used for Poisson's
ratio. The dimensionless frequency given by equation (60) was used as the dependent
variable with the characteristic length, a, defined to be the half-width of the bar.

The results for the longitudinal mode will be described first. An investigation of the con
vergence of the frequency spectra was performed by subdividing the quadrant into 4, 9, 16,
25 and 36 elements. The five lowest frequencies of the 36 element model differed from the
corresponding values of the 25 element model by less than one percent for wave numbers
less than 3.50. The observed rate of convergence, as expected, was similar to that observed
in the case of the circular waveguide and it was apparent that the first several branches had
essentially converged in the case of the 36 element model. The frequency spectra for the first
ten branches, as generated by this model, are shown in Fig. 10. The branches labeled L are

7
L6

6
s1

c:::
> 5
U
Z
llJ
=>
~ 4
Q:
l>..
...J
<t
Z 30
iiiz
llJ
~

is 2 S: .Tz
0 =tz

• MINDLIN -FOX MODES

• LAME MODES

o "--_----l__--I.__--I.__--'-__-'

o 1 2 3 4 5

NONOIMENSIONAL WAVE NUMBER. lea

Fig. 10. Longitudinal mode spectrum for a square bar waveguide
(Poisson's ratio J) = 1/3, 36 element model).

the longitudinal branches while those labeled 51 are the so-called screw branches of the
square bar. The subscript on the S branches follows the nomenclature used by Fraser[lO]
to distinguish this type of motion from that which occurs in the torsional mode and which
is referred to by Fraser as 52 motion.

The branch crossings shown in Fig. 10 were determined by investigation of the displace
ment fields in the vicinity of the crossover points. The crossing of the second and third

IJSS Vol. 11 No. I-I
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longitudinal branches is particularly interesting since it has apparently not been detected
previously.

The results shown in Fig. 10 compare very favorably with those published by Fraser[ll].
Fraser utilized the displacement fields from the circular rod and the method of colloca
tion to obtain dispersion curves in the rectangular bar. In his first paper on this topic[lO]
he obtained the first one or two branches for each mode (longitudinal, flexural and torsional)
and pointed out that the method would not produce accurate results for the higher branches
nor for rectangular bars with width to depth ratios greater than two. There is no reason to
believe that the finite element formulatipn is limited by either of these considerations,
although a large number of elements may be required if a very high degree of accuracy is
desired. In the case of bars with width to depth ratios greater than two it would probably
be desirable to use additional subdivisions of the longer semiaxis when subdividing the
cross section into elements. However, this is a procedural detail which adds no additional
complication to the analysis.

The first five longitudinal branches shown in Fig. 10 are all but indistinguishable from
those presented in Fraser's note[I I]. As observed by Fraser, the Mindlin-Fox exact solutions,
which include the Lame modes as a special case, also fall on the predicted spectra, as shown
in Fig. 10. The sixth branch lies several percentage points above Fraser's but this is to be ex
pected because the displacement field for such a high order branch would require additional
elements for an accurate representation. The very good agreement between Fraser's results
and those of the finite element analysis suggests that his collocation method produces a
small positive frequency error at large wavelength in a fashion almost identical to that
previously described for the finite element analysis. This conclusion is substantiated by the
increasing difference between his branches and the experimental data.

The 36 element model was also used to obtain the torsional mode spectra for a square bar.
The results, for Poisson's ratio equal to one-third are shown in Fig. 11. Due to the sym
metry properties of the square bar, some of these branches are of the screw type. These
branches correspond to transverse displacement fields which are symmetric about the
diagonals of the bar and are referred to as the S2 branches by Fraser[lO].

Triangular waveguide

The triangular waveguide element shown in Fig. 6 has been used to investigate the dis
persive characteristics of an equilateral triangle waveguide with Poisson's ratio equal to
one-third. The parameter, a, which is used in the expressions for the dimensionless frequency
and wave number was defined to be one-half the side length of the triangle.

Since an analysis of this type of waveguide had not been performed previously, an initial
investigation was conducted where in all modes of propagation were retained in the solution.
The cross section was subdivided into equilateral subregions to form the finite elements.
A typical model consisting of nine elements is illustrated in Fig. 12. Initially, models con
taining 1, 4, 9, 16 and 36 elements were utilized. This preliminary investigation revealed
that several of the branches of the frequency spectra correspond to repeated roots of the
frequency equation. The first branch, for example, pertains to flexural motion about both
the 1-1 and 2-2 centroidal axes shown in Fig. 12. Furthermore, an examination of the
complete set of displacement fields revealed that it was possible to simplify the finite ele
ment models by representing only the portion of the waveguide on the right-hand side of a
cutting plane which passes through the centroidal axis and the line labeled 1-1 in.Fig. 12.
This type of idealization will be referred to as a half-bar model. The possible modes of
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motion can then be subdivided into two groups such that each group may be obtained
separately by enforcing the proper displacement boundary conditions on the cutting plane.

The first group of modes contains displacement fields which are symmetric with respect
to the cutting plane. This group contains the longitudinal mode and the 2-2 axis flexural
mode. It also contains a type of mode which is unique to the equilateral triangle waveguide.
This mode has been named the symmetric screw mode, SS, for reasons which will become
apparent subsequently. The second group consists of modes for which the y and z compon
ents of the displacement vector are antisymmetric with respect to the cutting plane. These
are the torsional mode, flexural mode about the 1-1 axis and another screw type of motion
called the antisymmetric screw, or AS mode.

y

1
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I
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(20.,0)

Fig. 12. Nine element idealization of the equilateral triangle waveguide (half-bar
6 element model).
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The symmetric modes can be obtained from the half-bar model by setting the x compon
ent of the displacement vector to zero at all nodal points which lie on the cutting plane.
Similarly, the antisymmetric modes will result from letting the longitudinal and y compon
ents be zero at these nodes.

As a result of these considerations, a 45 element half-bar model was used to further
refine the spectra. This model was equivalent to an 81 element full-bar model and therefore
resulted in a considerable improvement in the accuracy of the spectra branches.

The branches have been numbered without regard to the fact that several of them repre
sent two modes of propagation (eigenmodes). Thus, the first branch is labeled number I
and the terminology la and lb is used to refer to the two eigenmodes. The displacement
field for each branch is described as longitudinal, screw, flexural, or torsional on the basis
of the nature of the displacement vector at the centroid of the cross section. Thus, if only
the longitudinal displacement component is nonzero the branch is referred to as longitud
inal. If the longitudinal displacement component is zero, but one of the transverse compon
ents is nonzero, the motion is of either the flexural or screw type. Finally, if all components
of the displacement vector vanish at the centroid, the branch corresponds to torsional
motion. The complete frequency spectra for the triangular bar waveguide through the 13th
branch, obtained from the 45 element half-bar model, are presented in Fig. 13. The mode
of propagation corresponding to each branch is given in Table 1. The subscripts on the
flexural modes define the axis about which the flexure occurs (see Fig. 12).

For the equilateral triangle waveguide, the three-fold symmetry about lines joining the
vertices and centroid results in two modes which, although similar to the screw modes in
the square bar, are not completely equivalent. The transverse displacements of the vertices
for these two modes are shown in Fig. 14. The dashed lines illustrate the paths followed by
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Fig. 13. First thirteen branches of the complete spectra for an equilateral triangle
waveguide (Poisson's ratio v = 1/3, 45 element half-bar model).
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Fig. 14. Symmetric and antisymmetric type 1 and type 2 screw modes for the
equilateral triangle waveguide.

Table 1. Modes of propagation corresponding to the first thirteen branches
of the frequency spectra for the equilateral triangular bar waveguide

Branch no.

I a &b
2
3
4a &b
5a&b
6a&b
7
8
9

10 a &b
II a &b
12
13 a & b

Mode of propagation

Flexural
Torsional
Longitudinal
Flexural
Screw
Flexural
Longitudinal
Torsional
Longitudinal
Screw
Screw
Torsional
Screw or flexural

Mode terminology

FLF~
T 1

L 1

n,N
SSLASf
n,n
L 2

T2

L 3

SS~, AS~
SSf, AS;
T3

SorF

the vertices during one half-cycle of the motion. The positions of the solid circles indicate
the relative locations of the vertices at an extremum of the motion. For convenience of
discussion, the uppermost vertex will be referred to as vertex number 1 while the remaining
vertices will be referred to as numbers 2 and 3 reading clockwise from number 1.

Figures 14(a) and 14(c) illustrate what have been called the symmetric type 1 and type 2
screw modes. The transverse displacements at the second and third vertices are analogous
to the motion at the corners of the square bar for the Sl and S2 mode, respectively. However,
for the SSl mode the motion at vertex number 1 is along the line joining the vertex to the
centroid instead of transverse to this line as is the case at the other two vertices. The SS2
mode is similar to the longitudinal mode except that the motion at vertex number 1 is a
half-cycle out of phase with the motion at the other two vertices. This motion may be dis
tinguished from a flexural mode in that the second and third vertices move along the diagonals
instead of along paths approximately normal to the line which joins these two vertices.

The AS2 mode shown in Fig. 14(d) is the antisymmetric counterpart of the SS2 mode.
The antisymmetric type 1 screw mode AS l , shown in Fig. 14(b), appears to be unique. It
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is similar to the F2 mode if the path of the transverse displacements at the second and
third vertices are rotated through approximately 75 degrees to a horizontal plane. This
difference appears to be too great to describe this mode as flexural although it appears to
be the only feature which distinguishes the two types of motion. The mode shapes for the
thirteenth branch are not clearly distinguishable as either a flexural or screw pair.

Several of the mode shapes for the flexural, torsional, longitudinal and screw modes of
propagation are shown in Fig. 15. The mode shapes are all given for a constant value of
Ka = 0·5. The longitudinal displacement field is shown at the left end of the waveguide
element while the transverse displacement field is shown at the opposite end. It should be
noted that the scales used to represent the various displacement components are not the same
for all modes.
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Fig. 15. Typical mode shapes for equilateral triangle waveguides (Poisson's ratio v = 1/3,
Nondimensional wave number Ka = 0-5, 36 element model).

Fiber reinforced composite waveguide

As a final example of the application of the finite element method to the study of elastic
wave propagation in waveguides, the dispersive characteristics of a unidirectional fiber
reinforced composite were investigated. Both components of the composite were assumed
to be homogeneous, linearly elastic, isotropic materials. The direction of propagation was
taken to be parallel to the fibers and only the longitudinal mode has been considered.
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The composite has been assumed to be infinite in extent in all three coordinate directions.
Thus, the dispersive behavior is a direct consequence of the interaction of the stress waves
at the interface of the fiber and the surrounding matrix material. Finally, the fibers have
been assumed to be equally spaced along each of two orthogonal directions in a plane
normal to the fiber axes. A cross section of the composite is shown in Fig. 16. A represent
ative subregion of the cross section, represented by the shaded region, is also shown in
the figure.

Since the composite is assumed to be unbounded in the x and y directions the transmis
sion of longitudinal waves in the direction of the fibers will produce no displacements
normal to the boundary of the shaded region. The shaded region may therefore be isolated
from the remainder of the composite and treated as a waveguide with the stipulation that
the appropriate boundary displacements are imposed.

The shaded region in Fig. 16 was assumed to be square, and this permitted the analysis

y

F

MATRIX MATERIAL B

c

Fig. 16. Finite element model of fiber reinforced composite (55 elements).

to be further restricted to a triangular subregion of the waveguide cross section. This
subregion is formed by three planes parallel to the fiber axis which intersect the cross section
along the lines labeled BC, FC and FB, where the point F is located at the center of the fiber.
The boundary conditions on the plane which passes through BC have been discussed above.
Symmetry requires that the y component of displacement must be zero on the plane through
FC while x and y displacement components must be of equal magnitude on the plane
through FB.

A finite element model of the waveguide is also shown in Fig. 16. The physical and geo
metric parameters of the model, see Table 2, have been selected to match those of a compo
site which had been previously investigated both theoretically and experimentally[12].

The parameters, a and Cs ' which were used to obtain the dimensionless frequency and
wave number were set equal to one-half the distance between the fibers and the velocity
of shear waves in the fiber material, respectively. The dispersion relation for the composite,
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Table 2. Physical and geometric parameters of the fiber reinforced composite
consisting of silica fibers and polystyrene matrix material [12]

Physical parameters

Poisson's ratio (v)
Shear modulus, dynefcm2

, (G)
Young's modulus, dynefcm 2

, (E)
Density, gmfcm3

, (p)

Geometric Parameters

Fiber dia, em,
Fiber spacing, em, (2a)

Silica

0'17
3'12 x 1011
7·29 X 1011

2-2

0'102
0'236

Polystyrene

0'353
0'1323 x 10"
0'358 X 10"

1'056

depicted in the form of a phase velocity versus wave number relationship, is shown in Fig.
17. The first four branches from the finite element analysis are represented by the continu
ous curves in the figure.

As mentioned earlier, the composite which was analyzed has been studied previously.
Two theoretical formulations referred to as lattice and waveguide models were used in the
earlier study. These analyses are much too lengthy to be described here but are discussed
in detail in the previously quoted reference. It is of interest to note, however, that the lattice
model represented the fiber as having a square cross section while the waveguide model
represented the fiber and the surrounding matrix material as concentric circular cylindrical
waveguides. Thus, neither model was capable of describing the true geometric configuration
of the waveguide. The results of these analyses are also shown in Fig, 17.

Four experimental points on the first branch were also obtained in the earlier study[l2].
It will be seen that the finite element first branch phase velocity curve passes very close to
these points, with a difference of about 2·5 per cent at Ka = 1·17. The previous analyses had
errors of about 4·6 per cent and g.g per cent at this value of the dimensionless wave number.

---FINITE ELEMENT RESULTS
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------ WAVEGUIDE MODEL [12]
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Fig. 17. Frequency spectra for the fiber reinforced composite.
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It is interesting to observe that the first branch finite element results correspond to the prior
waveguide model results for Ka less than 2·0 and then to the lattice model for larger values
of Ka. For the higher branches, the finite element model agrees very closely with the results
of the latice model analysis.

The finite element distribution was determined by considering the nature of the displace
ment field functions which were anticipated. Thus, it was expected that the dependence of
the displacements on the angle between the x axis and the diagonal line, FB, would extend
into the region of the fiber. This would almost certainly be true at short wavelength and
for the higher branches. The requirement to reflect this type of behavior was met by sub
dividing the fiber element along radial lines. Furthermore, the fact that the component of
displacement normal to each boundary plane must have zero slope in addition to zero
magnitude at the boundary suggested that the curvature of these displacement fields would
be greater in the vicinity of the boundary. Thus, the matrix material elements adjacent to
the boundaries were made somewhat smaller than the interior elements. The finite element
model shown in Fig. 16 contains 55 elements (21 fiber and 34 matrix) and it represents 129
degrees of freedom. This model was deemed capable of obtaining at least the first few
branches of the longitudinal mode spectra with very good accuracy.

5. CONCLUSIONS

The results of the sample problem investigations clearly illustrate that the finite element
method for formulating the frequency equation is simple, efficient, accurate and versatile.
In particular, the method can be used to obtain frequency spectra for waveguides of any
cross-sectional shape. The necessary mass and stiffness properties for circular core, sleeve.
rectangular and triangular elements have been developed and are presented in this paper.

Perhaps one of the most desirable features of the method is its simplicity. The standard
form of the frequency equation considerably reduces the complexity of the analysis with
respect to other methods. The direct availability of the displacement fields in the form of the
eigenvectors facilitates the investigation of branch crossings and determination of displace
ment behavior for each branch.
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A6crpaKT - ,L(aeTcSI TeopHH KOHe'iHOrO :meMeHTa ,l:\JISI aHaJIH3a ,l:\HCCHIIaTHBHhIX xapaKTe

pHCTHK yrrpyrHX BOJIHOBO,l:\OB IIPOH3BOJIhHOrO IIOIIepe'lHoro Ce'feHHSI. OIIpe,l:\eJISIlOTCSI Heo6xo

AHMhIe CBoil:cTBa MaCChI H lKecTKOCTH ,l:\JISI KpyrJIOH lKHJIhI, KpyrJIOH BTyJIKH, IIPSIMOyrOJIhHhlX

H TpeXyrOJIhHhIX 3JIeMeHTOB. YKa3hIBaeTCH npaKTH'feCKOe npHMeHeHHe 3THX HOBhIX 3JIeMeHTOB

B paCqeTe CIIeKTpOB 'faCTOThI ,l:\JIH KpyrJIhIX, KBa,l:IpaTHhIX H TpexyrOJIhHhIX BOJIHOBO,l:\OB H ,l:\JIH

YCHJIeHHhIX BOJIOKHaMH CJIOHCThIX MaTepHaJIOB. OIIpe,l:\eJISleTCSI ,l:\HCCHIIaTHBHaH xapaKTe

pHCTHKa CJIOHCThIX MaTepHaJIOB Ha OCHOBe <pOpMyJIHPOBKH, KOTopaSi MO,l:\eJIHpyeT BOJIOKHO

KaK l(HJIHH,D;p H MaTepHaJI oKpylKalOll(eil: CpeAhl MaTpHl(hI B <popMe IIpSiMoyrOJIhHOrO CeqeHHH.

CpaBHHBalOTCSI, TaKlKe, 'fHCJIeHHhle pe3YJIhTaThI, IIonyqeHHhIe H3 aHaJIH3a KOHe'fHOrO 3JIe

MeHTa, C ,l:\OCTyrrHhIMH pe3YJIhTaTaMH H3 ,l:\pyrHx MeTO,l:\OB.


